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Abstract

In the present paper, a theoretical model is studied on the ¯ow in the liquid annular ®lm, which is ejected from a
vessel with relatively higher temperature and painted on the moving solid ®ber. A temperature gradient, driving a
thermocapillary ¯ow, is formed on the free surface because of the heat transfer from the liquid with relatively higher

temperature to the environmental gas with relatively lower temperature. The thermocapillary ¯ow may change the
radii pro®le of the liquid ®lm. This process analyzed is based on the approximations of lubrication theory and
perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the

liquid layer are solved for a temperature distribution on the solid ®ber. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Fluid coating on a ®ber is an interesting subject

for the ¯uid mechanics, and also for ®ber proces-

sing. The usual model considers a moving solid

®ber drawn from a liquid with half-in®nite free sur-

face, and the capillary force controls the thickness

of the coating liquid [1]. In the present paper, the

¯uid or melt layer ejected from a ¯uid or melt

vessel and coated on a ®ber are considered to simu-

late the Barus e�ect or Die Swell e�ect, which

changes the cross-section in a polymer jet and is

often observed in the polymer processing. The e�ect

of Newtonian ¯uid can only explain a small vari-

ation of cross-section, for example, an increment of

20%, and the larger increment is explained usually

by the rheological property of the liquid medium

[2]. In fact, the property of polymer ¯uids varies

from Newtonian to rheological in a large range.

The polymer processing requires an understanding

of the heat and mass transfer processes, and in ad-

dition, the e�ects of surface tension and its vari-

ation with temperature. The in¯uence of surface

tension on extradite swell shows that the surface

tension decreases the extradite cross-section in a

Newtonian ¯uid [3]. However, the solutal capillary

¯ow induced by the surfactant of the liquid may

increase the thickness of the liquid layer [4]. The

temperature of liquid or melt ejected from the exit

of a manufactured vessel is higher than the environ-

mental gas temperature. The stronger heat exchange

results a relatively larger temperature gradient on

the free surface, especially in the region near the
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exit of vessel. Therefore, a thermocapillary ¯ow will

be induced in the liquid layer, and will change the

cross-section of the liquid layer.

As the heat transfer process will result the non-

uniformity of the temperature on the free surface of

the liquid layer, the thermocapillary ¯ow may be

induced in a thin liquid layer on a planar solid

wall with non-uniform temperature distribution. By

using an approximation of the lubrication theory, a

higher order ordinary di�erential equation of liquid

thickness was demonstrated, and its solution for

given temperature distribution at solid boundary

was obtained for unsteady cases in a thin liquid

layer [5]. A similar method was applied to discuss

the steady cases where a smooth condition at the

symmetric cross-section was imposed [6]. The Die

Swell e�ect due to the thermocapillary ¯ow in a jet

of liquid ®lm painted on a moving planar solid

boundary was analyzed, and the results show that

the thermocapillary ¯ow may increase the cross-sec-

tion of the liquid layer [7]. All these models deal

with a motionless ®lm with in®nite extention [5,6]

or a moving solid plane [7], and have a non-uni-

form temperature distribution on the solid plane.

The variations of free surface curvatures are given

in the longitudinal direction.

In the present paper, the change in cross-section due

to the thermocapillary convection in an axisymmetric

and steady model of Newtonian ¯uid is discussed for

the case of jet annular liquid layer casting on a moving

cylindrical ®ber. The reason for using the Newtonian

¯uid assumption is that the e�ect of thermocapillary

¯ow is emphasized specially, and furthermore, the

coupling e�ect of both thermocapillary ¯ow and rheo-

logical e�ect may be discussed in the next step. The

lubrication approximation and the perturbation

method are used. The variation in free surface curva-

ture radius of ¯uid coating on a cylindrical ®ber is

mainly the radius of the liquid layer but not the curva-

ture radius in the longitudinal direction as in the cases

of [5,6]. The ®nite, but not very small, capillary num-

ber will be discussed in the present paper. An ordinary

di�erential equation of second order for the radii of

the liquid layer is demonstrated, and the solution is

given by two conditions of the liquid radii. The sol-

ution shows clearly the important e�ect of thermoca-

pillary convection on the thickness variation of the

liquid layer, and the variation of the cross-section

depends sensitively on the thermocapillary e�ect in ad-

dition to other typical parameters.

Nomenclature

C Capillary number
Bi Biot number
h height of liquid layer

H heat transfer coe�cient across free surface
k thermal conductivity
l length of liquid layer

Ma Marangoni number
p dimensional pressure
P non-dimensional pressure

Pe Peclet number
Pr Prandtl number
r dimensional radial coordinate
R non-dimensional ®ber radius

T liquid temperature
Tg gas temperature near the free surface
T s solid temperature

T� dimensional typical temperature
u radial velocity component
U non-dimensional radial velocity

v� dimensional typical velocity
w velocity component in z direction
W non-dimensional longitudinal velocity

z longitudinal coordinate

Greek symbols
e geometrical aspect ratio

g expanding angle of liquid layer
Z non-dimensional height of liquid layer
k thermal di�usivity

n kinematic viscosity
r density of liquid
s surface tension

x non-dimensional coordinate of r
z non-dimensional coordinate of z
Y non-dimensional liquid temperature
Yg non-dimensional gas temperature

Ys non-dimensional solid temperature
C non-dimensional stream function

Subscripts
e at cross-section z = 0
l at cross-section z = l

i at solid boundary r � ri
� dimensional typical value
m at cross-section z � l and solid boundary r � ri
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2. The model of jet annular liquid layer

A simpli®ed model of ¯uid coating on a ®ber is
suggested as shown in Fig. 1, where the liquid layer of
height h0 is ejected from the exit of a melt or liquid

vessel and then attached on a moving solid ®ber. The
cylindrical coordinate system �r, y, z� is adopted, and
the axisymmetric process depending on (r, z ) is

assumed, therefore, @=@y � 0: The melt or liquid will
¯ow to a distance z � l far from the exit of the vessel
at z = 0, and the distance l is much larger than the

radius r0: The geometrical aspect ratio e � r0=l is
small, i.e.e� 1: The liquid temperature Te at the exit
is higher than the environmental gas temperature Tg

and the temperature Tm at z � l: A moving solid ®ber

is drawn from the center of the liquid vessel, and
moves with the same velocity u0 of the liquid at the
lower boundary of the exit. The heat transfer between

moving solid ®ber, liquid jet and environmental gas
may result a large temperature gradient on the free
surface, especially near the exit of the vessel, and then,

the thermocapillary ¯ow will be driven in addition to
the jet ¯ow.
The liquid is assumed to be incompressible and

Newtonian with constant kinematic viscosity, n and
thermal di�usivity, k: The relationships of the mass
conservation, the momentum conservation and the
energy conservation will be given as
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where (u, 0, w ) is the velocity vector and the azimuthal
velocity is assumed to be zero, and r, p and T are, re-

spectively, the density, pressure and temperature of the
liquid, n and k are, respectively, the kinematic viscosity
and thermal di�usivity.

The boundary condition of the liquid layer can be
summarized as follows.

r � ri: u � 0, w � w0, T � T s�z�; �2:5�
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z � 0: u � ue�r�, w � we�r�, T � Te�r�; �2:10�

z � l: u � ul�r�, w � wl�r�, T � Tl�r�, �2:11�

where r � h�z� is the equation of free surface and

r0 � h�0�, the superscript `` ''' denotes the di�erential

Fig. 1. The schematic diagram of the physical model of a jet liquid ®lm.
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h 0�z� � dh�z�=dz, n is the unit vector in the normal
direction, ri is the radius of cylindrical solid, T� is a

constant reference temperature, denoting we�ri � �
wl�ri � � w0 and Tl�ri � � Tm, and the coe�cients k and
H are, respectively, the thermal conductivity of liquid

and heat transfer coe�cient across the free surface.
Eq. (2.6) describes the free surface as a stream surface.
Eq. (2.7) shows the viscose stress in the tangent direc-

tion balancing with the thermocapillary force driven
by the surface tension gradient, and Eq. (2.8) is the
momentum conservation in the normal direction. Eq.

(2.9) gives the heat transfer across the free surface
where the radiation e�ect is omitted.
The temperature T s in the solid ®ber will be solved

together with the ®elds in the ¯uid and satis®es the

Laplace equation
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where ks is the thermal conductivity of the solid ®ber.
In principle, the thermocapillary ¯ow in the liquid

layer will be obtained by connecting the solution of
¯uid region, Eqs. (2.1)±(2.11), and the solution of solid
region, Eqs. (2.12) and (2.13). A linear solution of T s

could be obtained as follows

T s
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T�
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z

`
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where T� is a constant temperature, which is the high-

est temperature in the liquid region and relates to the
temperature at z � 0: By using the temperature sol-
ution, Eq. (2.14) in the solid ®ber, the problem is then

simpli®ed, and may be solved in the ¯uid region only.
Non-dimensional quantities and parameters may be

introduced based on the lubrication theory as follow

[5].
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where r0 is the radius of vessel at the exit z � 0, the
typical temperature T� and the typical velocity v� are

adopted, respectively, as

T� � T s�ri, 0�, v� � ÿejds=dTjT�=rn, �2:16�

and s is the surface tension. The basic feature of the
lubrication problem is that, there are two typical scales

of di�erent order of magnitude, that is, one typical
scale l is much larger than the r0, and other quantities
have di�erent orders of magnitude. The non-dimen-

sional parameters are, respectively, the Reynolds num-
ber, Re, and the Peclet number, Pe, i.e.

Re � v�`
n

, Pe � v�`
k
: �2:17�

The Prandtl number, Pr, and the Marangoni number,
Ma, are given as

Re � PrMa,

where Ma � ÿs 0TT�l=kn � ePe: Non-dimensional
equations are then written as follows.
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The corresponding boundary conditions will be:

x � R: W �W0�const�, U � 0, Y � Ys�z�; �2:22�

x � Z�z�:

Z�0� � 1,

U�x, Z� � Z 0W�x, Z�,
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z � 0: U � Ue�x�, W �We�x�, Y � Ye�x�;
�2:24�

z � l: U � Ul�x�, W �Wl�x�, Y � Yl�x�;
�2:25�

where the Capillary number, C � ÿs 0TT�=s0, is not

small, and the non-dimensional Biot number is de®ned
by Bi � Hh0=k:

3. Perturbation method

The non-dimensional equations and boundary con-
ditions show the relationships of the orders of magni-

tude, and the perturbation method may be applied by
the expansion based on the small parameter e: For the
analysis of order of magnitude, it is required that

Re � O�1�, Pe � O�1�, Bi � O�1�,

C � O�10ÿ1±100 �:
�3:1�

It is noted that, de®nitions of the Reynolds number
and the Peclet number in (2.13) are e times smaller
then the usual de®nitions, because the typical velocity

v� is e times smaller than the usual typical thermocapil-
lary velocity. The quantities may be expanded as fol-
lows.
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Substituting Eq. (3.2) into the governing equations
and boundary conditions, the problem could be solved
order by order.

The zero-order relationships may be written as
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and the boundary conditions are
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Z�0� is written as Z hereafter for simpli®cation. By using
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boundary condition, Eq. (3.11), the solution of Eq.
(3.6) is

Y�0��x, z� � Ys�z� ÿ Bi
ÿ
Ys ÿYg

�
Z

1� Bi Z ln�Z=R� ln

�
x
R

�
: �3:14�

The heat transfers from the solid at temperature Ys

to the free surface at temperature Y�0��Z, z� and then to
the gas at temperature Yg: The temperature in the
liquid ®lm will be uniform if the temperatures at solid

boundary x � R and at exit of melt vessel z � 0 keep
uniform, same as the environmental gas temperature.
In this case, there will be no thermocapillary ¯ow in
the liquid layer.

Eq. (3.4) implies that the pressure is a function of z
only, and then Eq. (3.10) at free surface gives
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Substituting Eq. (3.15) into Eqs. (3.3) and (3.5) and
using free surface condition, Eq. (3.8), the velocity
®eld in the liquid layer can be written as
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Eq. (3.17) shows that longitude velocity consists of a
main jet velocity, W0, in addition to the contribution

of the cross-section variation and the thermocapillary
e�ect. By using solutions (3.16) and (3.17), a stream
function C�x, z� can be easily obtained as
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where C0 is an integral constant and may be selected
as zero. Eqs. (3.14)±(3.17) depend on the height of
liquid layer, which is determined by boundary con-
dition (3.9).

The velocity and temperature boundary conditions
in (3.12) and (3.13) cannot be given arbitrarily, and
must satisfy the distributions of general solutions

(3.14), (3.16) and (3.17).

4. Radii equation and its solution

Substituting Eqs. (3.14), (3.16) and (3.17) into

boundary condition, Eq. (3.9), at the free surface, the
height equation of the liquid layer is given as(
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According to the solution of pressure (3.15) and
de®nition (3.18), Eq. (4.1) of the height Z is a second-
order ordinary di�erential equation of variable z and

may be written as
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and

G
ÿ
Z, Z 0, z

� � G1
ÿ
Z, Z 0, z

�
G2
ÿ
Z, Z 0

�
� G3

ÿ
Z, Z 0, z

�
G4�Z� � G5

ÿ
Z, Z 0, z

�
� G6

ÿ
Z, Z 0, z

�
G7�Z�

� G8
ÿ
Z, Z 0, z

�
G9�Z�, �4:4�

where

G1 �
(�

ln

�
Z
R

�� 2 dD

dz
ÿ ln

�
Z
R

�
Z 0D� Zln

�
Z
R

�
dYs

dz

�W0

)
Z 0,

G2 �
"
Z
2

ln

�
Z
R

�
ÿ Z 2 ÿ R 2

4

#(�
2� ln

�
Z
R

��
Z 0

dD

dz

� d 2Ys

dz 2
Z� dYs

dz
Z 0
)
,

G3 �
"ÿ

Z 2 ÿ R 2
�
�1� 2Z�

4
ÿ
�
Z3 � Z

2

�
ln

�
Z
R

�#

�

8><>:1

Z
ln

�
Z
R

�
dD

dz
ÿ 1

Z
dYs

dz

ÿ
1

c
� 1ÿYs ÿ

�
1ÿ ln

�
Z
R

��
D

Z 2
Z 0

9>=>;Z 0,

G4 �

8><>:2

�
1ÿ ln

�
Z
R

��
Z 0

Z 2

dD

dz

� 2

1

C
� 1ÿYs ÿ

�
1:5ÿ ln

�
Z
R

��
D

Z3
Z 0 2 ÿ 1

Z
d 2Ys

dz 2

� 2Z 0

Z 2

dYs

dz

9>=>; �
"
Z4

2
ln

�
Z
R

�
ÿ 5Z 2 ÿ R 2

16

#
,

G5 �
"
Z3ln

�
Z
R

�

ÿ
ÿ
Z 2 ÿ R 2

�ÿ
8Z3 � Z 2 ÿ R 2

�
16Z 2

#
G6
ÿ
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,
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"
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#
1� Bi Z ln�Z=R�
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ÿ
Ys ÿYg

��1ÿ Bi Z��1� ln�Z=R���
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ÿ
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1� Bi Z ln�Z=R�� 2

Eq. (4.2) requires two boundary conditions of Z,
which are usually given as

Z�0� � 1,
dZ�0�

dz
� g, �4:5�

where g is the expansive angle of the jet liquid on the
free surface at the vessel exit.
According to temperature distribution (2.14), the

non-dimensional temperature Ys on the ®ber bound-
ary x � R may be written as

Ys � 1ÿ �1ÿYm �z, �4:6�

where non-dimensional temperature Ym � Tm=T�:
The temperature on the solid ®ber decreases uni-

formly from the vessel exit value T��r� at z = 0 to
the temperature Tm at z = `, because of the heat
transfers from the relatively higher temperature in

the liquid or melt to the relatively lower environ-
mental temperature T � Tg: Substituting temperature
distribution (4.6), the solution of Eq. (4.2) under

boundary conditions (4.5) may then be obtained.
Typical parameters in the calculations are adopted
as

Yg � 0:1, Ym � 0:1, Bi � 0:5: �4:7�

The longitudinal velocity W0 will be from 0 to 9,
and capillary number C is adopted in the range
[0.1, 0.9].
Substituting Eq. (4.7) into temperature distribution

equation (3.14), the temperature in the jet liquid
layer may be demonstrated as

Y�0��x, z� � 1ÿ 0:9zÿ 0:45�1ÿ z�Z
1� 0:5Z ln�2Z� ln�2x�: �4:8�

The ®rst two terms on the right-hand side give the
temperature distribution at the ®ber boundary which
is independent of the x, and the third term is the
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temperature decrease due to the heat transfer to the
environmental gas. Relationship (4.8) gives a deter-

mined temperature distribution at the vessel exit
Y�0��0, x� � 1ÿ 0:45 ln�2x�=�1� 0:5 ln 2� and an uni-
form temperature Y�0��x, 1� � 0:1 at the cross-section

z � 1: These are the reasonable boundary conditions
required by Eqs. (3.12) and (3.13).
Similar discussions can be applied to the ¯ow ®elds,

which depend mainly on both thermocapillary e�ect
and the jet ¯ow. By using height equation (4.8),
equation of the stream function (3.19) is reduced to

C�0��x, z� �
(
ÿ 0:9Zÿ 0:45�1ÿ z�ZZ 0

1� 0:5Z ln�2Z�

� Z ln�2Z�
"

0:45Z
1� 0:5Z ln�2Z�

ÿ 0:45�1ÿ z��1ÿ 0:5Z��
1� 0:5Z ln�2Z�� 2 Z 0

#)
Q�x�

�
�
ÿ dP

dz

�"ÿ
x 2 ÿ R 2

� 2
16

ÿ Z 2Q�x�
#

� W0

2
x 2 �C0, �4:9�

where the integral constant C0 in relationship (3.19)
may be adopted as zero, and

ÿdP �0�

dz
� ÿ 0:9

Z
ÿ 0:45 ln�2Z�

1� 0:5Z ln�2Z�
� 0:45�1ÿ z��1ÿ 0:5Z�ln�2Z�

Z
�
1� 0:5Z ln�2Z�� 2 Z 0

�
(
1

C
� 0:9zÿ 0:45�1ÿ z�Z�1ÿ ln�2Z��

1� 0:5Z ln�2Z�

)
Z 0

Z 2
,

�4:10�

Q�x� � x 2

2
ln

�
x
R

�
ÿ x 2 ÿ R 2

4
: �4:11�

The radii of liquid layer may be written as

Z�0��z� � 1� d�z�, �4:12�

and there are jd�z�j � 1 in many cases. In this case, by
using Eqs. (4.5) and (4.6), stream function (4.9) may
be written as

C�0��x, z� � ÿ
h
0:070727

ÿ
x 2 ÿ 0:25

� 2�0:5W0x
2 ÿC0

i
�
h
16=C� 0:062659zÿ 0:001033

ÿ
x 2 ÿ 0:25

� 2
� �0:1290925� 0:85691755z�Q�x�

i
d 0

�
h
0:001033

ÿ
x 2 ÿ 0:25

� 2�0:866932Q�x�id
�O

ÿ
d 2
�
, �4:13�

where d 0 has the same order of magnitude as d: The
®rst bracket on the right-hand side is the zero order

stream function, which shows that the main ¯ow is
dominated by the jet velocity if the jet velocity is not
smaller than the typical thermocapillary velocity

W0r1: In this case, the thermocapillary ¯ow is sec-
ondary. The term of C shows the in¯uence of surface
tension, which is involved in second bracket of the ®rst

order relationship.

5. The cross-section pro®les

In case of pure thermocapillary convection, there is
no jet ¯ow W0 � 0, and the ¯ow is driven by the gradi-

ent of surface tension due to the temperature non-uni-
formity on the free surface. This case is similar to the
one discussed in [5,6]. Fig. 2 shows pro®les of liquid

radii depending on the capillary number C for case
W0 � 0 and g � 0:5: The results show that the larger
the capillary number, the larger the radii of liquid
layer. Relationship (3.15) gives the results that, the

larger Capillary number C relates to a smaller press-
ure, and a larger radius of liquid column due to the
momentum equilibrium on the free surface in the nor-

mal direction.
However, the conclusion is reversed if the jet vel-

ocity is larger than the typical thermocapillary velocity

Fig. 2. The radii pro®les of liquid column depending on

Capillary number C = 0.9, 0.7, 0.5, 0.3, 0.1 (from upper to

lower) in pure thermocapillary convection W0 � 0 and

g � 0:5:
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as shown in Fig. 3, where W0 � 5: In this case, the

pressure distribution is determined mainly by the e�ect
of jet ¯ow but not by the thermocapillary ¯ow. The
larger capillary number C relates to a smaller surface

tension s, and then a smaller radius of the liquid col-
umn. The calculations show that the radii of liquid col-
umn is increased with increase of the Capillary number

C if the jet velocity is not larger than the typical ther-
mocapillary velocity, that is, W0R1, otherwise, the
radii will be decreased with the increasing of the Capil-
lary number C.

The expanding angle g at the vessel exit z � 0 is a
sensitive parameter as shown in Fig. 4 for case W0 � 5
and C � 0:5: As usually expected, the larger the

expanding angle, the larger the radius of liquid col-
umn. It should be noted that the non-dimensional re-
lationship of the second, boundary condition in (4.5)

can be written in the dimensional form as

dh�0�
dz
� eg: �5:1�

Therefore, the real expanding angle tanÿ1�eg� is a
smaller angle and close to zero in the cases discussed
here. The in¯uence of jet velocity W0 is given in Fig. 5.

The larger the jet velocity, the smaller the radius of
liquid column. This conclusion agrees with the one dis-
cussed for Fig. 3.

A general conclusion on the e�ect of thermocapillary
¯ow on the enlargement of cross-section of jet liquid is
summarized in Table 1, where the liquid column height

Z�0��x, 1� = constant, depending on W0 and g are
given. The results show that the cross-section may be
increased several times in case of larger expanding
angle g and smaller jet velocity W0:

6. Discussions

The thermocapillary ¯ow in an annular liquid ®lm

Fig. 3. The radii pro®les of liquid column depending on

Capillary number C = 0.1, 0.3, 0.5, 0.7, 0.9 (from upper to

lower) in case of W0 � 5 and g � 1:0:

Fig. 4. In¯uence of the expending angle g on the radii pro®les

of the jet liquid column for cases W0 � 5 and C � 0:5: The
pro®les relate to g � 4:0, 2.0, 1.0, 0.5 and 0.1, respectively,

from upper to lower.

Fig. 5. In¯uence of jet velocities on the radii pro®les of the jet

liquid column for case g � 1:0 and C � 0:5: The pro®les relate

to W0 � 1:0, 3.0, 5.0, 7.0 and 9.0, respectively, from upper to

lower.

Table 1

Liquid column radius Z�0��x, 1� depending on W0 and g in

case of C � 0:5

g W0

0 0.1 0.5 1.0 2.0 5.0

0.1 1.2774 1.2480 1.1555 1.0860 1.0321 1.0087

0.5 1.8437 1.7855 1.5825 1.3912 1.1760 1.0451

1.0 2.4197 2.3402 2.0545 1.7669 1.3908 1.0954
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painted on a moving ®ber was discussed by using the
lubrication approximation and the perturbation

method. The analytical solutions of pressure, tempera-
ture and velocities were obtained in the zero order.
The variation of liquid column radii is determined by a

second order ordinary di�erential equation, and may
be solved by two conditions of radius at the vessel exit
z � 0: By using the Runge±Kutta method, the problem

was solved. The variation of liquid radii depending on
the thermocapillary ¯ow, in addition of the jet velocity
W0, the Capillary number C and the expanding angle

were analyzed. The special case W0 � 0 relates to the
case discussed in [5,6]. However, the con®guration is
cylindrical in the present paper.
The approximations of lubrication theory and per-

turbation theory have of course limitations. The Barus
e�ect may has larger variations of cross-section, which
may be two or three times in some cases. Based on the

results of present paper, a large variation of the cross-
section may be obtained in case of relatively large
expanding angle and relatively smaller jet velocity as

shown in Table 1.
The results of present paper show mainly the mech-

anism of the cross-section variation due to the thermo-

capillary e�ect and jet ¯ow. Firstly, the solidi®cation is
important from the point of view of processing. The
temperature will be decreased along the liquid ®ber
and the melt will be solidi®ed at a distance where the

liquid temperature equals the melt point due to the
heat transfer. The solidi®cation is not involved in the
present paper, and the cross-section z � l is selected to

be located before the solidi®cation. Secondly, The ®ber
processing requires more complex con®guration and
wider parameter regime, and an ideal model is used in

the present paper. However, the main purpose of the
present paper concentrates in the mechanism study to
show the existence of the thermocapillary ¯ow induced
by the heat transfer. Many e�ects should be included

based on the processing process, and should be studied
in the future.
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